魔方吧·中文魔方俱乐部

 找回密码
 注册
搜索
热搜: 魔方
查看: 579896|回复: 9
打印 上一主题 下一主题

[原创]一般魔方扰动产生的原理及证明和应用 [复制链接]

Rank: 8Rank: 8

积分
5267
帖子
1141
精华
8
UID
633
性别

魔方理论探索者 智力游戏设计大师 十年元老

跳转到指定楼层
1#
发表于 2005-11-10 08:52:56 |显示全部楼层 |倒序浏览

一般魔方扰动产生的原理及证明和应用

作者:邱志红

前言

大家想必都读过pengw大师的《N阶正方体色子阵魔方状态变换定律:第四版》。是否对扰动有了初步的了解了呢?现在知道为什么三阶魔方的一个面心块不可以原地独立转动90度,但可以原地独立转动180度了吧。也知道为什么用三交换是无法解决四阶魔方两个侧棱对换问题的原因了吧。

但一般的魔方呢?比如五魔方是否也存在类似的扰动?如果存在,那么存在的条件又是什么呢?这就是我在这里要探讨的问题。

我将对他提出的扰动加以深化和推广,让更多人能够理解和接受并运用。

三阶魔方扰动产生的原理

之前介绍一点,魔方最基本的交换是三交换。即三个同簇的块位置三交换。

这里只以四个角块为例讲解三阶魔方的扰动问题,如下图,分别将它们标上1234。看看利用三交换会发生什么?

利用三交换能使四个角依次替换吗?答案是不能。看上面右图,发现角块14的位置要是对换一下就对了,但实际上不论怎么使用三交换都是不可能换过来的。在试的过程中你可能会遇到14位置需要对换,21的位置需要对换等等。其实用群论里面对称的观点,这些问题都可以归结到角块14的位置对换的问题,只是角块标号不同而已。为了以后描述的方便,也为了节约空间。其实可以用一串数的形式来描述该问题。

角块1234的这种原始状态就可以记为1234。注意它的首尾是连接起来的构成一个环。然后这四个元素的任意三个可以进行正或逆时针的三交换。看看123进行顺时针三交换就是2314,也就是上面右图反映的情况。

这样扰动的问题就成了一个纯数字游戏了,三阶魔方是否存在扰动就看四个数里任意三个数字依次替换能否从1234转化到2341。结果是不能。你可能要说123进行依次替换不行,那么试试别的或许就行了。那就试试124的依次替换吧。结果是:1234—→2431。要是34换一下就好了。但实际就不可能,上面已经提到对称性了,所以只要验证一种情况就可以了。假如最后得到的是相邻的两个需要对换,那就是存在扰动,很明显三阶魔方就存在扰动。

同样的道理对棱块也一样存在扰动。只要是四个进行三交换就存在扰动。

这就是三阶魔方扰动产生的原理。

扰动理论的推广及证明

看看五魔方吧,它的一个层有五个角块和五个棱块。现在只讨论角块,棱块道理是一样的。

用上面的方法就可以将五个角块的初始状态记为12345。现在就来看看用三交换能否将它转化为23451。

过程:12345→23145→23451。

先1,2,3位置依次替换,后1,4,5位置依次替换。结果竟然成功了从12345—→23451了。这说明五魔方就不存在扰动了,只用三交换就可以可以解决它。

推广:一般魔方的一个层顶面的边数假设为t,那么就存在t个位置可以依次替换的小块,而且至少是一组,可能是多组。

当t=2n时,魔方存在扰动。n≥2,且n∈Z。

当t=2n+1时,魔方不存在扰动。n≥1,且n∈Z。

下面就来证明该命题了,还是采用一串数来记录小块的状态。我采用的是数学归纳法来证明的。

.当t=2n时,魔方某一层的一簇位置可以替换的小块的初始状态就是1 2 3……2n-1 2n.

⑴初值,当n =2时,t=4。只能1234—→2314,是存在扰动的。

㈡假设,假设n=k时成立,那么只能1 2 3……2k-1 2k —→ 2 3 4……2k-1 1 2k。是存在扰动的。

㈢当n=k+1时,利用上面假设的结果1 2 3……2k-1 2k —→ 2 3 4……2k-1 1 2k。

那么1 2 3……2k-1 2k 2k+1 2k+2 —→ 2 3 4……2k-1 1 2k 2k+1 2k+2—→2 3 4……2k-1 2k 2k+1 1 2(k+1)。

发现n=k+1时,结论也成立,存在扰动。

②.当t=2n+1时,魔方某一层的一簇位置可以替换的小块的初始状态就是1 2 3……2n 2n+1.

⑴初值,当n =1时,t=3。只能123—→231,是不存在扰动的。

㈡假设,假设n=k时成立,那么只能1 2 3……2k 2k+1 —→ 2 3 4……2k 2k+1 1。是不存在扰动的。

㈢当n=k+1时,利用上面假设的结果1 2 3……2k 2k+1 —→ 2 3 4……2k 2k+1 1。

那么1 2 3……2k-1 2k+1 2k+2 2k+3 —→ 2 3 4……2k 2k+1 1 2k+2 2k+3—→2 3 4……2k 2k+1 2(k+1) 2(k+1)+1 1。

发现n=k+1时,结论也成立,不存在扰动。1 2 3……2k 2k+1 —→ 2 3 4……2k 2k+1 1

证明完毕。

注意:在该串数中任意插入几项,不会影响以前的变换。但会影响整串数的外在形式和整体性质。原因很简单,因为三交换是这串数中任意三个交换,某些数完全可以不参与交换,增加的那些项就相当于不参与变换的项。所以我在变换1 2 3……2k 2k+1 —→ 2 3 4……2k 2k+1 1两边的最后都插入2k+2和2k+3,是不会影响之前的变换的。而插入奇数个项虽然不影响之前的变换但很显然改变了该串数的整体性质了。由扰动变为无扰动,或者相反。

另外上面两种情况证明的最后一个变换都是最后三项三交换。形式也略有改动。

扰动理论的通俗证明

上面是从理论的角度来分析和证明的。其实还有一个简单的方法可以证明该问题,就是递推的方法。

当t=2n时,该串数为1 2 3 4 5 6 7 ……2n-1 2n。

首先123进行替换得1 2 3 4 5 6 7 ……2n-1 2n—→2 3 1 4 5 6 7……2n-1 2n。

然后145进行替换得2 3 1 4 5 6 7……2n-1 2n—→2 3 4 5 1 6 7……2n-1 2n。

再是167进行替换得2 3 4 5 1 6 7……2n-1 2n—→2 3 4 5 6 7 1……2n-1 2n。

………………………

发现就是“1”在移动,每次向后移动两位,同时把被跨过的的两项各向前挤一位。而且每次都落在奇数的后面,由此递推得它最后一次会落在2n-1后面。

那么整个变换过程就为1 2 3 4 5 6 7 ……2n-1 2n—→2 3 4 5 6 7……2n-1 1 2n。老问题,1和2n的位置换不过来,就存在扰动了需要额外转动一个单位来解决。

而当t=2n+1时,情况也是一样的。“1”还是落在奇数后面,最后一次就落在2n+1的后面了。

整个变换过程就为1 2 3 4 5 6 7 ……2n 2n+1—→2 3 4 5 6 7……2n­­­­­­­­ 2n+1 1。再一看发现这2n+1个数轮换了。能轮换一次就可以轮换第二次,第三次……,同样也能反着轮换。这样就不存在扰动了,用三交换就可以解决了。

说白了,扰动就是一场数字游戏,并不是很深奥的东西。

扰动理论的具体应用

现在来看看扰动理论的应用。推论1:五魔方的面块可以原地独立转动一个单位(72度)。

实现的方法很容易,先将五魔方的一个层转动一个单位,然后依照证明里面的方法运用三交换对角块和棱块各进行轮换一次使角块和棱块又复原就可以。

但同样的事情在每个层都为四边的奇数阶立方体魔方里面就做不到。因为将表层转动一个单位以后,无法通过三交换对角块和棱块各进行轮换一次使角块和棱块又复原。但面心块转动两个单位(180度)还是可以的。也是可以用上面证明过程中的方法可以证明的:

1 2 3 4 5 6 7 ……2n-1 2n—→2 3 4 5 6 7……2n-1 1 2n—→3 4 5 6 7……2n-1 1 2 2n —→3 4 5 6 7……2n-1 2n 1 2。

就是把“2”再按上面的方法做一次。 最后把1,2,2n做一次三交换就可以了,得到的就是最右边的结果。令n=2。就是1234—→3412。也就是立方体魔方的情况。

在一般的魔方里面如果再说独立转动90度就不准确了,说独立转动一个单位更加合适。

再看看下面的魔方Shaped Cube:

它是最能反映该问题的魔方了。其中顶(底)面边数为奇数的都不存在扰动,而边数为偶数的都存在扰动。所以在玩这种魔方的时候注意消除扰动哦。

也和三阶魔方一样,偶数边的魔方面心块虽然不能独立转动一个单位,但都可以转动两个单位。

而且注意,扰动不但对表面的层有作用,同时对中间层也同样起作用。四阶魔方两棱对换问题就是明证。

又来了一个问题。既然扰动对中间层也起作用,那为什么三阶的中间层转动90度又可以复原呢?这个问题很简单,三阶魔方中间层转动90度等价于夹该中间层的两个表层各转动一个单位(90)。实际上是进行了两次轮换,上面证明了这是可以复原的,是无扰动的。但四阶魔方就不行了。它的一个中间层的转动总是等价于三个层各自的轮换,进行了奇数次轮换,是会产生扰动的。

凡此等等,就不多讲了。

[此贴子已经被作者于2005-11-10 8:54:02编辑过]

Rank: 8Rank: 8

积分
5267
帖子
1141
精华
8
UID
633
性别

魔方理论探索者 智力游戏设计大师 十年元老

2#
发表于 2005-11-10 11:53:00 |显示全部楼层

不好意思.我是学数学的,习惯将问题推广到n取无穷大的情况.这样就更能反映一般规律.也更通用了.

我讨论的是一个层有n个位置可以相互替代的小块的情况.Shaped Cube就是最好的范例了.玩过五魔方的人是否很奇怪不论怎样打乱都只用三交换就可以复原,因为它的一个层里位置可以相互替代的小块是奇数个(5个).用文中简单的推理方法就发现可以用三交换来替换得到5轮换.

但在一层只有偶数个(4个)位置可以相互替代的小块的立方体魔方这就行不通.也是用文中简单的推理方法就可以得到.

扰动其实从所有魔方全局的高度来看就是一个关于奇偶的数学游戏.

使用道具 举报

Rank: 8Rank: 8

积分
5267
帖子
1141
精华
8
UID
633
性别

魔方理论探索者 智力游戏设计大师 十年元老

3#
发表于 2005-11-10 14:05:10 |显示全部楼层

我也声明一点:我的一式法重点在于将各种魔方的解法归纳成一种公式模式----即一式法经典的那8下.主要目的是用统一的方法得到一般魔方的三交换.簇内三交换是解一般魔方共同的必由之路.

重点是:归纳统一.至于最短复原的问题,不是我关心的内容.

扰动只是根据奇偶及实际情况判断,然后决定是否要额外添加的步骤,是能很容易办到的,是对魔方状态的一种处理方法,是独立于公式以外的东西.扰动只是一种关系,并不是实际的转动步骤,是对公式的指导而不是一种公式.

打个不恰当的比方:假如把魔方的转动步骤比喻成构成魔方还原的材料,那么扰动及扰动的消除就是工具了.工具最后是不会合到成品里面去的.工具还是工具,而材料的多种不同组合就构成了各种各样的成品.

最后一点:可能该方法的名字取得让人误解了,与具体得内容有点不太相符.那就学大烟头的,改名叫"一般魔方基本公式的统一产生方法"好了.

使用道具 举报

Rank: 8Rank: 8

积分
5267
帖子
1141
精华
8
UID
633
性别

魔方理论探索者 智力游戏设计大师 十年元老

4#
发表于 2005-11-13 19:02:00 |显示全部楼层

这些帖子应该放在"一式解万方"里面.在这里我不受理.

现在来继续讨论交换的问题:从立方体魔方的8个角中随便挑选5个,并标好顺序,结果由文中推理的方法也可以得到5轮换,但意义不大,最终还是要归结到同一层中四个角换位的问题.我想说的是参与换位的块是奇数的时候都可以轮换,是偶数的就不行.

另外我补充一点,广义扰动如何判断:首先看看转层有几种类型,然后判断每种类型层的单位转动能否由三交换得到.都能的话就无扰动,比如说Shaped Cube里面的五边的那种,它有两种类型的转层,顶层及与顶层平行的共三个层是一个类型,是五边的,它们的单位转动是1/5周.五个侧面是一个类型,都是四边的,但一次要转动两个单位(180度).而由文中的方法可以推得它的这两种基本转动都可以由三交换得到.它就是无扰动的.

假如存在如下类型的层就存在扰动问题,该层的最小的转动为1/4,1/6,1/8等等.当你用三交换来解的时候,遇到需要两交换的时候就能判定存在扰动,这时候将该转层转动1/2n就可以再用三交换解决了.n阶魔方就转动1/4了.Puck就转动1/6了.正逆转都可以,这是由二轮换不产生扰动决定的.

使用道具 举报

Rank: 8Rank: 8

积分
5267
帖子
1141
精华
8
UID
633
性别

魔方理论探索者 智力游戏设计大师 十年元老

5#
发表于 2005-11-14 12:49:27 |显示全部楼层

我想我对扰动理解太浅了.可能完全不懂,不应该高攀引用pengw里面艰深的术语.

我发现对换就称扰动,实在太没有主见了.

其实我应该称该现象为"对换",然后来解决"对换".就像大烟头说的一样,在不知道扰动的情况下照样可以解魔方.知道特殊位置如何对换就可以了.

可能这样新手更容易理解该现象的原因及消除方法.是否应该更名叫 对换产生的原理及证明和运用.

还有可能扰动和对换本就是两回事.我混为一谈了.

或者对换就是扰动的通俗的理解.

最后,我将对我的方法的名字及系统换一个外衣,但不改实际内容.

学金优的就取名叫 "邱志红的复原方法".这样相对保险一些了.至于术语,我就自己定义并绝对通俗地加以解释.

大家就期待新版的出炉吧.

使用道具 举报

Rank: 8Rank: 8

积分
5267
帖子
1141
精华
8
UID
633
性别

魔方理论探索者 智力游戏设计大师 十年元老

6#
发表于 2005-11-14 13:06:15 |显示全部楼层
以下是引用pengw在2005-11-4 16:31:59的发言:
包括了如此多种类的魔方,四海归一,归纳工作具有极大的挑战性,邱兄弟真是不惜血汗,可圈可点,理论区当以邱兄弟为榜样,不断推进理论事业.
以下是引用清道夫2在2005-11-10 12:24:24的发言:

PENGW的N阶定律为其后的其它相关理论研讨做出了开创性的铺垫,N阶定律提出的一些独一无二的概念如簇,扰动,色向和等,被其它后来的理论大量引用与推广,就状态描述而言,N阶定律之后的理论匀没有脱离N阶定律的原创概念,N阶定律描述的准确性更是不容置疑.

对N阶正方体色子阵魔方:

"一式复原法"采用的核心思路,最早可见于pengw基于N阶定律提出的定律复原法

"一式复原法"严格地讲,应该是簇内变换的"一式复原法",此方法尚不能以数学形式处理扰动关系,因而无法复原扰动簇是"一式复原法"的一个严重隐患.

"一式复原法"不是以一个魔方的初态为代入量进行运算处理,因而一式复原法严格地讲应该是"单基态簇一式复原法"

"一式复原法"尚没有声明对有色向簇与无色向簇处理方法区别,而这种区别是显然存在的.

"一式复原法"如何将扰动方程结合进来,是最终成功的关键,而不仅仅一种数学游戏.

如果将扰动关系简单地视为奇偶游戏,就请邱兄弟用非扰动方法计算一下任意阶魔方状态数,预言一下三阶最大公式循环周期.

当前N阶定律的诸多概念被邱兄弟大量移植到异形魔方上,令人欣慰,由此证明N阶定律开创性描述的应用价值.

对邱兄大作的一些看法,只代表个人意见,还望笑纳.



以下是引用清道夫2在2005-11-14 12:40:03的发言:
楼主,最早你大量引用李教授的内容,又否定李教授,现在你又大量使用N阶定律的内容,又否定PENGW,到底是不是什么地方出了问题?如要否定别人,就搞出一点真正属于自已的创意吧,而完全不要用别人的东西东拼西凑.

没有你否定得这么快的,你几天就变脸了.而且企图完全否定.动不动就"没有任何……","完全不能……".……

使用道具 举报

Rank: 8Rank: 8

积分
5267
帖子
1141
精华
8
UID
633
性别

魔方理论探索者 智力游戏设计大师 十年元老

7#
发表于 2005-11-14 14:08:27 |显示全部楼层

我明白了.我会更深入研究一般魔方构成的原理及变换原理,从魔方最基本的层的转动导致小块位置交换谈起,还会就复原中会遇到的种种问题的本质及解决方法作最通俗的解释.而且我会注意突出最核心的东西,而不会犯"都是重点就都不是重点"的错误.

我的新帖子会像科普读物而非论文,恕对很多问题不会讨论得很深,恕不会给个什么方程之类的东西,恕对很多问题都不加证明地先承认下来.

复原是最终目的,我想也是绝大部分人关心的问题.

使用道具 举报

Rank: 8Rank: 8

积分
5267
帖子
1141
精华
8
UID
633
性别

魔方理论探索者 智力游戏设计大师 十年元老

8#
发表于 2005-11-14 23:11:28 |显示全部楼层

"没有任何……" "没有……的可能"……

这些字眼太武断了,希望你发言的时候也注意要慎重使用.

另外我有自己的主见,不需完全要按你的思路来.

主题是由我来决定,而挑刺是你的自由.

使用道具 举报

Rank: 8Rank: 8

积分
5267
帖子
1141
精华
8
UID
633
性别

魔方理论探索者 智力游戏设计大师 十年元老

9#
发表于 2005-11-15 22:50:45 |显示全部楼层

其实相似变换最有作用的是特殊的那种:内禀相似.

它能起到和一般相似一样的效果,但不增加步骤,甚至可以减少步骤.对最短复原应该能起到一定的作用.

使用道具 举报

Rank: 8Rank: 8

积分
5267
帖子
1141
精华
8
UID
633
性别

魔方理论探索者 智力游戏设计大师 十年元老

10#
发表于 2005-11-18 23:58:24 |显示全部楼层

现在我想明白了一个问题了.一般魔方最基本的变换是什么?

一般魔方最基本的变换是各个层的单位转动.魔方的复原,魔方从一个状态到另一个状态,扰动的解决等等问题都是通过这些最基本的转动来完成的.

三交换及其他的什么交换都是这些最基本最简单的变换复合得到的.而反过来三交换等变换都不能复合得到这些最基本的变换.意思就是两者不是等价关系.

这样通过基本的单位转动复合得到的魔方状态就不可能完全用三交换等来解决.这也就是不能"一式解万方"的原因.

看看三阶魔方一个面心块独立转动的问题,到头来还是要通过最基本的转动来解决,三交换无法使它转动,只能使周围的块三交换.

我虽然说五魔方没有扰动,但要使它的一个面心块转动72度,三交换还是无能为力,结果还是要先用最基本的转动使该层转动72度以后,再使用三交换才解决的.

我想说的是这些最基本的单位转动的重要性不亚于一个三交换.

要熄等了,快``````

使用道具 举报

您需要登录后才可以回帖 登录 | 注册

Archiver|手机版|魔方吧·中文魔方俱乐部

GMT+8, 2024-5-6 00:53

Powered by Discuz! X2

© 2001-2011 Comsenz Inc.

回顶部